

EL-STEM LESSON PLAN

Lesson Plan Information	
STEM Disciplines: <i>Mathematics, Computers, Robotics,</i>	Teachers: A.Coudounaris
Physics	A. Tsaousis
Topic: Transformations and Patterns in Geometry –	
Mathematics	Duration: Mathematics (4p)
Robotics)	Physics (4 periods)
Mechanics: Kinematics & Dynamics (Physics)	i liysius (+ portous)
Age Range: Grade 9 (14-15)	Language: English
Prior Knowledge and Skills Needed	
Basic programming skills	
Basic geometry and coordinate geometry knowledge	
Simple kinematics equations and dynamics	
Learning Objectives	
Mathematics: HSG-CO.A. Experiment with transformations in the plane	
HSG-CO.A.4. Develop definitions of rotations, reflections, and translations in terms of angles,	
HSG-CO \wedge 5 Given a geometric figure and a rotation reflection or translation draw the	
transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence	
of transformations that will carry a given figure onto another.	
Computers & Programming:	
2 CS 02 Design projects that combine hardware and software components to collect and	
2-CS-02 Design projects that combine hardware and software components to concet and	
exchange data. (P5.1)	
Use the basic steps in algorithmic problem solving to design solutions (e.g., problem statement and ex-	
design, implementing a solution, testing, evaluation).	
Physics:	
Representing forces as vectors	
Sketching and interpreting free-body diagrams	
Using Newton's second law quantitatively and qualitatively	
Using kinematics equations to calculate distance and displacement	

Pedagogical Approaches

game-based learning, inquiry-based learning, problem-based learning, collaboration

Learning Activities

Activity 1: Define and apply the basic transformations of shapes and functions in the coordinate plane

<u>Activity 2</u>: Design a Lego mindstrorms robot that can move in the x-y plane and program it using Scratch to verify translations given

<u>Activity 3</u>: Use physics and circle geometry concepts to calculate the distances covered by the robot. Check and evaluate using the friction concept

<u>Activity 4</u>: Use different shapes to verify your results

Assessment and Evaluation

Summative assessment

Formative assessment in an on-going base according to in-class observations (see Rubric)

Presentation of their work using power point or a tri-fold poster (rubric provided).

Check if the project is working with different shapes and translations

Resources

Laptops (BYOD)

Lego mindstrorms kit

Coordinate geometry plane

Use programming – Scratch (Internet access required) <u>www.scratch.mit.edu</u>

Geometry kit (ruler, compass, protractor)

Different shapes (laminated or tracing paper)

Additional Information/ Comments

The math, physics and Ed-tech teachers should collaborate for this interdisciplinary project, so it can be done in 1-2 weeks. The final assessment can be done in the Robotics Lab. An "expert" panel of teachers could be used for the final grade.